Similarity Measurement of Rule-based Knowledge using Conditional Probability
نویسندگان
چکیده
This study proposes the RO-RA-RV structure for rule-based knowledge and integrates methods of conditional probability, vector matrices, and artificial intelligence to establish a conditional probability knowledge similarity algorithm and calculation system. This calculation system can quickly and accurately calculate rule-based knowledge similarity matrices and determine the relationship among knowledge items, this relationship can function as the knowledge source for treatments that increase the addedvalue of the knowledge, through the inference of value-added treatment such as merging, integration, deletion, innovation and additions, the accuracy of the knowledge itself can be securely ensured and wrong decisions be avoided. According to the knowledge similarity matrices, the knowledge case most similar to the testing case can be quickly retrieved, and used for all types of with Knowledge-Based Reasoning or Case-Based Reasoning to help decision making and prediction.
منابع مشابه
Improvement of Rule Generation Methods for Fuzzy Controller
This paper proposes fuzzy modeling using obtained data. Fuzzy system is known as knowledge-based or rule-bases system. The most important part of fuzzy system is rule-base. One of problems of generation of fuzzy rule with training data is inconsistence data. Existence of inconsistence and uncertain states in training data causes high error in modeling. Here, Probability fuzzy system presents to...
متن کاملConflicting treatment model for certainty rule-based knowledge
The rule-based knowledge based expert system has traditionally emphasized the verification of structural errors in the rule base. For conflicting or overlapping rules, designated rules are usually followed to implement prioritized or direct deletions. However, there exist no proper methods by which to resolve conflicts, inconsistencies or redundancies in values. The citation of erroneous knowle...
متن کاملAn application of Measurement error evaluation using latent class analysis
Latent class analysis (LCA) is a method of evaluating non sampling errors, especially measurement error in categorical data. Biemer (2011) introduced four latent class modeling approaches: probability model parameterization, log linear model, modified path model, and graphical model using path diagrams. These models are interchangeable. Latent class probability models express l...
متن کاملOn Császár's condition in nonmonotonic reasoning
Császár’s condition is a well-known property introduced about 50 years ago in the axiomatic theory of conditional probability. In recent years such condition has been reconsidered by some authors, who have studied its role in the coherence-based approach to conditional probability. In this paper we consider the probabilistic entailment of a conditional knowledge base by another one. We represen...
متن کاملRisk measurement and Implied volatility under Minimal Entropy Martingale Measure for Levy process
This paper focuses on two main issues that are based on two important concepts: exponential Levy process and minimal entropy martingale measure. First, we intend to obtain risk measurement such as value-at-risk (VaR) and conditional value-at-risk (CvaR) using Monte-Carlo methodunder minimal entropy martingale measure (MEMM) for exponential Levy process. This Martingale measure is used for the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Inf. Sci. Eng.
دوره 24 شماره
صفحات -
تاریخ انتشار 2008